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a b s t r a c t

During the last decade several algorithms have been proposed for automatic mass detection in mammo-
graphic images. However, almost all these methods suffer from a high number of false positives. In this
paper we propose a new approach for tackling this false positive reduction problem. The key point of our
proposal is the use of Local Binary Patterns (LBP) for representing the textural properties of the masses.
eywords:
reast cancer

mage analysis
ammographic automatic mass detection

alse positive reduction

We extend the basic LBP histogram descriptor into a spatially enhanced histogram which encodes both
the local region appearance and the spatial structure of the masses. Support Vector Machines (SVM) are
then used for classifying the true masses from the ones being actually normal parenchyma. Our approach
is evaluated using 1792 ROIs extracted from the DDSM database. The experiments show that LBP are
effective and efficient descriptors for mammographic masses. Moreover, the comparison with current

ur pr
extural information
ocal binary patterns

methods illustrates that o

. Introduction

Breast cancer is considered a major health problem in west-
rn countries, and indeed it constitutes the most common cancer
mong women in the European Union [1]. A study developed in
003 by the American Cancer Society estimates that in the United
tates between one in eight and one in twelve women will develop
reast cancer during their lifetime [2]. In the European Commu-
ity, breast cancer represents 19% of cancer deaths and the 24% of
ll cancer cases [3]. Nearly 25% of all breast cancer deaths occur
n women diagnosed between ages 40 and 49 years. In the United
tates, for instance, breast cancer remains the leading cause of death
or women in their forties [4]. However, although breast cancer inci-
ence has increased over the past decade, breast cancer mortality
as declined among women of all ages [5]. This favourable trend in
ortality reduction is considered to be related to the widespread

doption of mammography screening [5–8] which allows to detect
he cancer at its early stages, and to the improvements made in
reast cancer treatment [4].

Among the different imaging modalities used for breast cancer
etection, mammography remains the key screening tool for the

etection of breast abnormalities. In a recent study, Vacek et al. [9]
how that the proportion of breast tumours that were detected in
ermont (US) by screening mammography increased from 2% dur-

ng 1974–1984 to 36% during 1995–1999. However, it is also well
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known that expert radiologists can miss a significant portion of
abnormalities [10,11]. In addition, a significant number of mam-
mographic abnormalities turn out to be benign after biopsy [12,13].

The introduction of digital mammography gave the opportunity
of increasing the number of commercial Computer-Aided Detec-
tion (CAD) systems to help radiologists to interpret and diagnose
mammograms. The idea of computer systems aiding radiologists
to detect breast cancer is not recent [14]. However, the nowadays
rapid development of full digital mammographic systems has being
accompanied by the natural increase of such systems. A CAD is a set
of automatic or semiautomatic tools developed to assist radiolo-
gists in the detection and / or evaluation of mammographic images
[11,15,16].

Back in 2001 Freer and Ulissey [15] using a database containing
12860 patients conclude that the use of CAD in the interpretation of
screening mammograms can increase the detection of early-stage
malignancies. However, controversial results published in 2005
using a database of 6111 women claimed to show that CAD, in its
present form, is not effective in the sense that there was no signif-
icant difference observed in cancer detection rates when using or
not the CAD [17]. The main drawback of CAD systems is the number
of false positives1 obtained, which makes the radiologist not really

trust them [18]. This is a major issue for the low number of malig-
nancies within the screening population, which is supposed to be
around 6 out of 1000 screened cases [19]. The so called false positive
reduction algorithms try to solve this drawback, i.e. given a Region

1 A false positive is a region being normal tissue but interpreted by the automatic
algorithm as a suspicious one.

http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
mailto:llado@eia.udg.edu
mailto:aoliver@eia.udg.edu
mailto:jordif@eia.udg.edu
mailto:marly@eia.udg.edu
mailto:joanm@eia.udg.edu
dx.doi.org/10.1016/j.compmedimag.2009.03.007


4 l Imag

o
t
r
w
a

p
T
i
[
t
s
t
[
m
i
i
w
M
a
f
s
M
c
u
d
t
o
o
m
o
p
t

2

f
h
i
t
fi
F
i
o
o
b
m

F
s

16 X. Lladó et al. / Computerized Medica

f Interest (ROI) – a sub-image containing the suspicious region –
he aim is to validate whether it contains a real lesion or it is only a
egion depicting normal parenchyma. This will be the focus of our
ork: reduction of the false positive detection of masses, which are
common lesion found in mammography.

In this paper we propose a novel approach to perform mass false
ositive reduction by using the textural properties of the masses.
he idea of using textural information for solving this problem
s not new and has been previously introduced in several works
20–22,38]. However, we study here the use of Local Binary Pat-
erns (LBP) [23] to characterize micro-patterns (i.e. edges, lines,
pots, flat areas) and preserve at the same time the spatial struc-
ure of the masses. To our knowledge, our recent seminal work
24] is the first attempt to use LBP in the field of mammographic

ass detection. LBP and its extensions have performed very well
n various comparative studies and have been applied successfully
n different real-world texture analysis problems [25,26]. In this

ork we show that using a LBP characterization and Support Vector
achines (SVM) in order to classify the ROIs between real masses

nd normal parenchyma we are able to improve the results on mass
alse positive reduction. We perform experiments on a complete
et of 1792 ROIs extracted from the Digital Database for Screening
ammography (DDSM) database, analyzing, evaluating and dis-

ussing the results when using different ROI image sizes, and when
sing different ratios of number of ROIs depicting masses and ROIs
epicting normal tissue in the database. The obtained results and
he comparison with previous works demonstrate the validity of
ur approach for reducing false positives. The rest of the paper is
rganized as follows. Section 2 reviews the false positive reduction
ethods in the mass detection problem. In Section 3 we describe

ur methodology, introducing LBP descriptors and presenting our
roposed extension. Section 4 presents the obtained results. Finally,
he paper ends with discussion and conclusions.

. Background

During the last decade several algorithms have been proposed
or the automatic mass detection purpose [27–29]. However, as we
ave seen in the introduction the main drawback of these methods

s the high number of false positives obtained [18]. Almost all works
rying to automatically detect masses in mammography need this
nal step in order to reduce the high number of false positives.
ig. 1 shows different examples of suspicious masses (represented

n black squares) detected by a mass detection algorithm. Note that
nly one detected ROI per image is a true mass while the remaining
nes are false positives. This is due to the complexity of the internal
reast tissue, which induces the detection of regions which are not
asses, but normal variations in tissue characteristics.

ig. 1. Example of suspicious masses (black squares) obtained by a mass detection algo
uspicious masses are false positives.
ing and Graphics 33 (2009) 415–422

A set of different techniques for false positive reduction have
been developed during the last years. These algorithms typically
work with one view, although recent approaches have tackled the
case of more than one view [30,31]. However, these approaches
based on multiple views have three main disadvantages: the images
must be correctly registered to allow a correct region comparison,
the gray-level values have also to be registered, and finally, there
are some specific cases where the comparison is not feasible, for
instance, those cases in which patients have suffered a previous
breast operation. In contrast, is important to notice that algorithms
based on only one view can always be used.

Algorithms for mammographic mass false positive reduction
using a single image are typically based on the classification of the
ROIs as normal tissue or as depicting the abnormality. Hence, these
algorithms are based on a typical classifier scheme: given a database
of known cases the system learns how to differentiate between both
kinds of ROIs. Subsequently, once the system has been trained, a
new ROI can be classified. Among all these false positive reduc-
tion algorithms we can distinguish between two main strategies.
The first one includes the set of algorithms which firstly extracts
features from the ROIs, usually related to their texture, and subse-
quently trains the classifier. On the other hand, the second strategy
handles this problem as a template matching approach. Each new
ROI image is compared to all the ROI images of the database and
then it is classified as an image containing a mass or not. Note
that the first strategy is based on feature vectors extracted from
the ROIs while the second one is based on comparing directly the
new ROI image with all the images of the database using a simi-
larity measure. Table 1 summarizes some works belonging to both
strategies.

Observing the table we can see that one of the main differences
among all these works is the ratio between the number of ROIs
depicting masses and the total number of ROIs. This is an impor-
tant issue because the number of wrongly classified ROIs is likely
to increase as the number of normal ROIs increases. One should
remember that the aim of this work is to reduce the number of false
positives. However, all these methods have to choose the trade-
off between reduction of the false positive fraction and increase
of the false negative fraction. This step is usually done optimiz-
ing the parameters to obtain the best results. Observe also that
the evaluation of the methods illustrated in Table 1 is presented
using Receiver Operating Characteristics (ROC) analysis [32]. In such
analysis, widely used in the medical field, a graphical curve which

represents the true positive rate as a function of the false posi-
tive rate is computed. The percentage area under the curve (known
as Az) is an indication for the overall performance of the method,
and is typically used to analyze the performance of the algorithms.
Sahiner et al. [20] extracted a huge set of features, and used genetic

rithm. Real masses are represented by a white contour. Note that almost all the
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Table 1
Summary of the reviewed works on false positive reduction. We detail the features used, the classifier/similarity used (where LDA means linear discriminant analysis; NNet,
neural network analysis; NN, nearest neighbor classifier; ICA, independent component analysis; SVM, support vector machines; and PCA, principal component analysis), the
number of ROIs depicting masses vs the number of normal ROIs, and the results obtained. Note that for all works accuracy is given in terms of Az (the area under the ROC
curve) except for the works of Christoyianni et al. [22] which just gives the correct classification percentage and Angelini et al. [33] where the results are given in terms of
ROC curves.

Classifier-based

Author Year Features Classifier ROIs Results

Sahiner et al. [20] 1996 Texture, morphologic LDA, NNet 168/504 Az = 0.90
Qian et al. [21] 2001 Texture, shape NNet 200/600 Az = 0.86
Christoyianni et al. [22] 2002 Gray-level, texture, ICA NNet 119/119 88.23%
Tourassi et al. [39] 2005 Gray-level NNet 681/984 Az = 0.84
Angelini et al. [33] 2006 Wavelet decomposition SVM 1000/5000 ROC
Oliver et al. [34] 2006 PCA C4.5 + NN 196/392 Az = 0.83
Varela et al. [38] 2007 Gray-level, morphologic NNet 60/60 Az = 0.90
Oliver et al. [36] 2007 2DPCA NN 256/1536 Az = 0.86

Template-based

Author Year Features Similarity ROIs Results
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hang et al. [40] 2001 Gray-level, shape
ourassi et al. [41] 2003 Gray-level
ourassi et al. [42] 2007 Gray-level, entropy

lgorithms to select the most discriminative ones. With this subset
f features, a neural net (NNet) and a linear classifier (LDA) were
rained and used to classify a new ROI. A similar strategy was used
y Christoyianni et al. [22], who extracted gray-level, texture, and
eatures related to independent component analysis (ICA) to train a
eural network. Note also, that they applied a principal component
nalysis (PCA) pre-processing step to reduce the complexity and
imensionality of the problem. On the other hand, Qian et al. [21]
nalyzed the implementation of an adaptive module to improve the
erformance of an automatic procedure which consists in training
Kalman-filter based neural net using features obtained from a
avelet decomposition. Angelini et al. [33] also proposed to use a
avelet decomposition to extract features. SVM were used in their
ork in order to classify the ROIs. It is important to notice that they

nly provide ROC curves to evaluate the results. Therefore, no Az
alue is available for comparison. A different strategy was recently
roposed by Oliver et al. [34], who adapted the idea of the eigen-

aces approach [35] to the mass detection problem. They introduced
he concept of eigenrois, which span the ROI subspace of the orig-
nal image space. The result of this transformation was a vector of

eights describing the contribution of each eigenroi in representing
he corresponding input image. They proposed to use these vectors
o construct the models for the training step. In [36] the authors
xtended their previous method by using the 2DPCA method [37]
nstead of the standard PCA technique, improving the performance
f the false positive reduction. Finally, Varela et al. [38] proposed an
trategy based on extracting gray-level and morphologic features,
nd training a neural net (NNet) used to classify the new ROI.

As shown in Table 1, the works of Chang et al. [40] and Tourassi
t al. [41,42] are based on comparing a new ROI with all the ROIs
n the database (template-based approach). The two most clear dif-
erences between them arise from the similarity measure and the
atabase used. More specifically, the former developed a likelihood
easure which depends on the gray-level and the shape of the ROIs.

oth parameters were compared with the new ROI and the set of
OIs present in the database, which was only composed by ROIs
epicting masses. From this comparison a likelihood measure was
omputed. On the other hand, the works of Tourassi et al. [41,42]

onsisted in comparing all the ROIs of the database (including ROIs
ith and without masses) with the new one using a mutual infor-
ation based similarity measure. Thus, the new ROI was labeled as

elonging to the closest class. Note that with the methods based on
he template-based strategy, the similarity measure used for clas-
Likelihood function 300/300 Az = 0.83
Mutual information 809/656 Az = 0.87
Mutual information 901/919 Az = 0.81

sifying the ROIs has to be re-computed for each new element, as it
measures the difference between the new ROI and all the ROIs in
the database.

In the following section we will introduce our false positive
reduction methodology based on a classifier-based scheme and LBP
texture features extracted from the ROIs.

3. Methods

Ojala et al. [43] introduced the original texture LBP operator with
the idea to perform gray scale invariant two-dimensional texture
analysis. Being theoretically simple, LBP has been demonstrated to
be a rich descriptor in many applications. The LBP operator labels
the pixels of an image by thresholding the neighborhood (i.e. 3 × 3)
of each pixel with the center value and considering the result of this
thresholding as a binary number. Fig. 2 (a) shows an example of how
to compute a LBP code. Note that the gray-level of the center pixel
is used as a threshold (1 is assigned to higher or equal gray levels,
while 0 to the lower ones). When all the pixels have been labeled
with the corresponding LBP codes, the histogram of the labels is
computed and used as a texture descriptor. Initially, the limitation
of this basic LBP operator was its small 3 × 3 neighborhood since it
can not deal with dominant features with large scale structures. Due
to this fact, the operator was later extended to use neighborhoods of
different sizes [23]. The idea of this operator is the detection of LBP
at circular neighborhoods of any quantization of the angular space
and at any spatial resolution. Therefore, it is possible to derive the
operator for a general case based on a circularly symmetric neigh-
borhood of P members on a circle of radius R (Fig. 2(b) illustrates
examples of circular neighborhoods). The gray values of neighbors
which do not fall exactly in the center of pixels are estimated by
interpolation. In addition to evaluating the performance of individ-
ual operators of a particular configuration (P, R), one could analyze
and combine responses of multiple operators using different (P, R)
parameters.

Another extension of LBP was the use of the so called uniform
patterns [23]. A LBP is called uniform if it contains at most two bit-
wise transitions from 0 to 1 or vice versa when the binary string is

considered circular. For example, 00011100 and 11100011 are uni-
form patterns. As stated by Ojala et al., the uniform patterns account
for nearly 90% of all patterns in the (8,1) neighborhood and for about
70% in the (16,2) neighborhood in texture images. In this paper, we
shall refer the uniform LBP operator as LBPP,R

u2, where the sub-
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For our specific mass false positive reduction problem, SVM with
Fig. 2. LBP computation. (a) Example of the basic LBP operator. (b) Example

cript represents using the operator in a (P, R) neighborhood and
he superscript u2 indicates using uniform patterns.

As in the original work of Ojala et al. the histogram of the labeled
mage fl(x, y) is used as a descriptor. We can define this histogram
s

i =
∑

x,y

I(fl(x, y) = i), i = 0, . . . , n − 1 (1)

here n is the number of different labels produced by the LBP oper-
tor, and I(A) = 1 when A is true, while I(A) = 0 when A is false. This
iscrete occurrence histogram of the uniform patterns computed
ver an image or an image region contains information about the
istribution of the local micro-patterns such as edges, spots and
at areas, and has been demonstrated to be a very powerful tex-
ure descriptor. Note that all these patterns are typical descriptors
f mammographic lesions such as spiculated lesions (edges), small
asses (spots) and larger masses (flat areas).

.1. Using LBP for mass false positive reduction

Texture features have been utilized for many medical image
pplications, and have proven to be useful in discriminating tex-
ure classes in X-ray mammography, as well as in other modalities
or breast cancer detection. Specifically, in mammographic images,
exture and its gray-level spatial information play also a key role
n correctly detecting masses (see related works [20–22,38]). Due
o this fact, we study here the use of LBP for combining character-
stics of statistical and structural texture analysis, describing the
exture with micro-primitives (often called textons) and their sta-
istical placement rules. This idea has been successfully applied in
ther domains [26] where the analyzed image is divided into several
egions from which the LBP feature distributions are extracted and
oncatenated into a new feature vector used as a final descriptor.

Following the same idea, our general procedure consists in using
he LBP texture descriptor to build several local descriptions of the
OI and combining them into a global description. Afterwards, this

lobal LBP descriptor is the one used to reduce the false positives,
lassifying the ROIs between true masses and normal tissue (see
ig. 3 for some examples of ROI images).

Initially, the ROI image – which contains the suspicious mass –
s divided into several local regions. See Fig. 4 for an example of
e common circular LBP neighborhoods: (8,1), (8,2) and (16,2) respectively.

a mass image (left image) divided into 5 × 5 rectangular regions.
Notice that in this step one could use different divisions of different
size and shape. This will be analyzed in the results section where
different divisions (1 × 1, 3 × 3, 5 × 5, and 7 × 7) are tested. From
these regions, LBP histograms are independently extracted and then
concatenated to form a global description of the ROI. Observe that
we could analyze and combine responses of multiple LBP operators
using different (P, R) parameters. Moreover, we could also compute
a set of different LBP operators for some specific regions of the ROI
aiming to improve the final texture descriptor. This is also illus-
trated in Fig. 4 where the regions with higher probability to contain
mass information – the central 3 × 3 regions showed in the right
image – are used to compute different LBP operators. This point
will be further discussed in the experimental section where several
combinations of LBP operators are evaluated.

Following our methodology, the basic LBP histogram is extended
into a spatially enhanced histogram which encodes both the local
region appearance and the spatial relations of the mass. The ROI
image is divided into m small regions R0, R1, . . . , Rm and the spa-
tially enhanced histogram is defined as

Hi,j =
∑

x,y

I(fl(x, y) = i), (x, y) ∈ Rj (2)

where i = 0, . . . , n − 1, j = 0, . . . , m − 1. In this histogram, the ROI
is described on three different levels of locality: the labels for the
histogram contain the pixel-level texture patterns, the labels are
summed over a small region to produce information on a regional
level and finally the regional histograms are concatenated to build
a global description of the mass.

The final step of our proposal is the mass classification. For
this purpose we use the well-known SVM technique [44] which
performs an implicit mapping of data into a higher dimensional
feature space, where linear algebra and geometry can be used to
separate data. SVM based approaches have provided good results
in many applications, including texture classification problems.
a polynomial kernel is used to provide a membership between
ROIs depicting a true mass and ROIs depicting normal parenchyma.
In the results section we will compare the results obtained by
using SVM with those obtained using a Nearest Neighbor (NN)
classifier.
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Fig. 3. Examples of ROIs: (a–c) ROIs with masses; (d–f) ROIs without masses.
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ig. 4. Strategy for computing the LBP descriptor. The ROI image is divided into sm
patially enhanced histogram used as a final descriptor. Note that one could comput
nd combine them into the final descriptor.

. Results

This section is divided into the following subsections. First of
ll, the database and the methodology used to evaluate the results
re presented. Afterwards, the parameter optimization done in
rder to compute the final LBP descriptors is analyzed. We then
resent the obtained results when using different ratios of number
f ROIs depicting masses and ROIs depicting normal tissue. Finally,
e include the obtained results when using different ROI image

izes.
.1. Database and evaluation methodology

Our LBP approach has been evaluated using a database of 1792
OIs extracted from the DDSM mammographic database [45]. From
gions, where LBP feature distributions are extracted and concatenated to form the
rent LBP operators for some specific regions (3 × 3 central regions in the example)

this set, 256 depicted a true mass, while the rest 1536 were normal,
but suspicious tissue. Different scanners were used in the DDSM
for digitizing the mammograms of the database: a DBA M2100
ImageClear (42 × 42 �m pixel resolution), a Howtek 960 (43.5 ×
43.5 �m pixel resolution) a Lumisys 200 Laser (50 × 50 �m pixel
resolution), and a Howtek MultiRad850 (43.5 × 43.5 �m pixel
resolution). All the images were 12 bits per pixel. Finally, the
images were re-scaled to have the same resolution: 50 �m. Accord-
ing to the size of the lesion, we use six different groups of
ROI images, corresponding to the following mass sizes intervals:

<10 mm2, (10-60) mm2, (60–120) mm2, (120–190) mm2, (190–270)
mm2, >270 mm2. The number of masses in each interval were 28,
32, 37, 57, 69, and 33, respectively. Note we are dealing with dif-
ferent lesion sizes, an important aspect for correctly classifying the
masses.
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The evaluation of our experiments is done by using a leave-one-
ut strategy and ROC analysis. In the leave-one-out methodology, a
pecific input ROI is selected and classified according to the model
btained by training the system with the remaining ROIs in the
atabase. This procedure is repeated until all the ROIs have been
sed as an input image. The SVM classifier provides a numerical
alue related to the membership of each class. Thus, varying the
hreshold of this membership it is possible to generate a ROC curve
nd obtain the corresponding Az value.

In order to perform a more global evaluation we compute the
z value for different ratios of number of ROIs depicting masses
nd number of ROIs depicting normal tissue (from ratio 1/1 to
atio 1/6). The idea of analyzing these different ratios is twofold:
rstly, to evaluate the performance of our method on different lev-
ls of difficulty, and secondly, to compare our proposal with existing
ethods. Notice that previous works only provide results for spe-

ific ratios (see Table 1). Hence, analyzing all these ratios will enable
he comparison with them.

.2. Parameters optimization

As explained in Section 3.1, some parameters may be optimized
n order to obtain the final LBP descriptor. For instance, the number
f regions in which a ROI image is divided or the parameters (P, R)
sed to obtain the LBP responses. With the aim of choosing the
umber of divisions, we tested the performance of LBP on four dif-

erent configurations (1 × 1, 3 × 3, 5 × 5 and 7 × 7 regions) for all
he ROI image sizes, all ratios, and using the basic LBP8,1

u2, LBP8,2
u2,

BP16,1
u2, and LBP16,2

u2 operators (see Fig. 5 (a)). The best result was
btained when dividing each ROI image into 5 × 5 squared regions
nd computing LBP8,1

u2 operators for each one. Using this configu-
ation we obtained an overall mean Az value of 0.882 ± 0.051. Note
hat the size of each subregion depended on the original ROI image
ize (i.e. larger ROIs will have larger regions). This was done to pre-
erve the spatial information of the ROIs at different mass sizes.

ith the aim of improving these results and obtaining a more accu-
ate description per ROI, we studied also the effect of adding a new
et of LBP operators for the 3 × 3 central regions. We computed two
ew LBP responses varying the radius R as a function of the size of
he ROI (i.e. Rsize = 4 and 6 was used for the smallest ROI image size
nd Rsize = 14 and 21 for the largest one). Using the Rsize parameter
e obtained similar LBP operators independently of the subdivi-

ions done per each ROI image size. The global descriptor was then
btained concatenating the 43 histograms of all the regions and

BP operators. For this new configuration, an overall mean Az value
f 0.911 ± 0.043 was obtained. Observe that better results were
btained when including LBP operators with different radius R in
he central regions. We then repeated the same experiment vary-
ng also the quantization of the angular space P in the basic 5 × 5

ig. 5. Experimental results. (a) Az values obtained when using LBP and varying the subdiv
ith the methods PCA, 2DPCA, LBP + NN and LBP + SVM. Each Az value is the mean compu

ize obtained with the methods PCA, 2DPCA, LBP + NN and LBP + SVM. Each Az value is the
ing and Graphics 33 (2009) 415–422

LBP computation and in the 3 × 3 central regions, using LBP8,1
u2,

LBP8,2
u2, LBP16,1

u2, and LBP16,2
u2. Similar results were obtained,

although, the basic LBP8,1
u2 combined with the LBP8,Rsize

u2 pro-
vided the best overall mean results for different ROI image sizes
and ratios. This was the final descriptor we used for our experi-
ments since it provided a good trade-off between performance and
feature vector length.

4.3. Results varying the ROIs ratio

Fig. 5(b) shows the obtained mean Az values for each specific
ratio when testing our proposal for all ROI image sizes. We include
a quantitative comparison with the recent works of Oliver et al.
[34,36], using our database of ROIs. While the first approach is based
on using standard PCA, the second introduced a variation on their
previous work by using the 2DPCA method [37] instead of the stan-
dard PCA technique (we shall refer to these methods as PCA and
2DPCA, respectively). Observe that the performance of our proposal
was clearly better than the PCA method. The results were also better
than the 2DPCA approach, specially for the cases in which we had
smaller ratios 1/4, 1/5 and 1/6. Note also that the use of 2DPCA itself
allowed to obtain better results than the original PCA approach.
Using PCA we obtained an overall mean Az value of 0.686 ± 0.095
for different ROI image sizes and ratios, using 2DPCA the Az value
was 0.868 ± 0.087, while using our LBP approach with SVM the Az
value was 0.906 ± 0.043. Note that we also show the results of LBP
when using a Nearest Neighbor (NN) classifier, obtaining an overall
mean Az value of 0.871 ± 0.036. Observe that LBP with NN pro-
vided better performance than 2DPCA for smaller ratios, although
the best results were provided by LBP with SVM.

4.4. Results varying the ROI image sizes

Fig. 5(c) shows the obtained mean Az values for each specific
image ROI size when testing our proposal for all ratios of number of
ROIs depicting masses and number of ROIs depicting normal tissue
(from ratio 1/1 to ratio 1/6). As in the previous section we include
our results obtained by using LBP, and those obtained by using PCA
and 2DPCA approaches. Analyzing this figure we are able to observe
the behavior of our approach when varying the ROI image sizes.
Note that LBP provided better and more constant overall results
than PCA and 2DPCA methods.

5. Discussion and conclusions
We have studied a novel method for mammographic mass false
positive reduction based on textural features. Our approach divides
a ROI image into small regions and computes local texture descrip-
tions using local binary patterns. The combination of these local

ision sizes. Note the 5 × 5 division obtained the best results. (b) Az values obtained
ted from the results of different ROI image sizes. (c) Az values per each ROI image
mean computed from the results of all the ROI ratios (from ratio 1/1 to ratio 1/6).
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Table 2
Obtained results per lesion size. Az values for ratio 1/1 and 1/3 respectively, detailed
per size (in cm2).

Lesion size (in cm2)

<0.10 0.10–0.60 0.60–1.20 1.20–1.90 1.90–2.70 >2.70 Mean

PCA 0.67 0.70 0.76 0.77 0.79 0.81 0.75
2DPCA 0.90 0.93 0.90 0.90 0.86 0.98 0.91
LBP + SVM 0.88 0.95 0.99 0.92 0.93 0.95 0.94
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CA 0.53 0.70 0.70 0.68 0.72 0.83 0.69
DPCA 0.81 0.83 0.87 0.84 0.89 0.93 0.86
BP + SVM 0.91 0.91 0.95 0.92 0.89 0.91 0.91

escriptors in a spatially enhanced histogram which encodes both
he local region appearance and the spatial structure of the masses
rovides our final feature descriptor. Afterwards, these descrip-
ors are used to classify the ROIs between true masses and normal
arenchyma.

The results presented in Section 4.4 have shown that LBP fea-
ures are effective and efficient for false positive reduction at
ifferent ROI image sizes, an important aspect for correctly classify-

ng the masses. Table 2 shows in more detail the Az values obtained
or the specific ratios 1/1 and 1/3 respectively for different lesion
izes. Note that all the approaches (PCA, 2DPCA and LBP + SVM)
re more suitable for false positive reduction of larger masses than
maller ones. This is due to the fact that larger masses have a larger
ariation in gray-level contrast with respect to their surrounding
issue than smaller masses, which are usually more subtle, even for
n expert.

On the other hand, the results presented in Section 4.3 have also
hown that even when using different ratios of number of ROIs
ith masses and number of ROIs with normal tissue it is possible

o obtain reliable results using our LBP approach.
There are two aspects to mention regarding the computational

ost of our experiments. Firstly, the inclusion of the leave-one-out
trategy has increased the overall computational time for train-
ng and testing. In particular, most of the computational time was
ue to the training of all the sets using SVM. Secondly, we should
mphasize that LBP is an efficient descriptor and its computa-
ional simplicity makes it possible to combine and apply different
perators. For instance, computing our LBP descriptor for a ROI of
00 × 400 pixels takes 30 ms approximately using the Matlab code
rovided by Ojala et al. [23].

Finally, in Table 3 we present a qualitative comparison – in terms
f Az value– with the most representative approaches of the state of

he art described in Section 2. Note that our efforts are concentrated
n obtaining the same ratio of masses used in their experiments.
owever, we want to clarify that not all the methods used the same
atabases and number of ROIs and therefore our aim is only to pro-

able 3
z comparison of different methods dealing with mass false positive reduction. We
etail the number of ROIs and ratio used in the original works. We also include
he results obtained with our LBP + SVM approach. Note that for some works the
tandard deviation is not available.

ROIs Ratio Az

ahiner et al. [20] 672 1/3 0.90
ian et al. [21] 800 1/3 0.86
hang et al. [40] 600 1/1 0.83 ± 0.02
ourassi et al. [41] 1465 ∼= 1/1 0.87 ± 0.01
liver et al. [34] 588 1/2 0.83
liver et al. [36] 1792 1/2 0.83
ourassi et al. [42] 1820 ∼= 1/1 0.81 ± 0.02
arela et al. [38] 120 1/1 0.90 ± 0.02
BP + SVM 512 1/1 0.94 ± 0.02
BP + SVM 768 1/2 0.94 ± 0.02
BP + SVM 1024 1/3 0.91 ± 0.04

[

[

[

[

[

[

[

[

ing and Graphics 33 (2009) 415–422 421

vide a general trend of the performance of our LBP approach with
respect to different strategies. For instance, the works of Chang et
al. [40], Tourassi et al. [41] and Varela et al. [38], which used a ratio
1/1, obtained Az values of 0.83 ± 0.02, 0.87 ± 0.01, and 0.90 ± 0.02
respectively. Note that for this ratio better performances are clearly
obtained using our proposal, being statistically significant at p-
value <0.0001. A similar behavior is observed for the works which
used the ratios 1/2 and 1/3. Observe that the difference between
the performance reported in the original PCA work of Oliver et al.
(Az of 0.83) and the ones showed in our quantitative comparison
(Az value of 0.69) is due to the use of different ROI image databases
and their particular level of difficulty (the database used in [34]
had less images and only 4 different ROI image sizes). In summary,
the comparison of our proposal with current methods shows the
feasibility of LBP descriptors for mass false positive reduction.
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